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INTRODUCTION

Substantial progress has been mede in the last several years in the field
of statistical mechanics of irreversible phenomena. Not only the important
problem of the irreversibility 11°:se1f has been clarified to a large extent,
but also it can be claimed now that we do have a way of describing kinetic
equations describing particular physical situations.®’® These can be even-
tually solved, at least in principle, and provide the transport coefficlents
of the particular phyeical system under consideration. We refer i{in particuvlar
to the work of Prigogine and his collaborators, which has influenced the whole
£1e12.22°7%® 1haotar as classical systems without external correlation sources*
are concerned, the problem of finding the kinetic equations (for the probability
dlstributions) can be considered to be solved.l On the other hand, there is
1ittle doubt that the derivation of the particular form of this solution, based
on an infinite perturbation expansion and the use of Fourier vectors in the
place of the coordinates, shall be simplified and that alternative forms of
kinetic equations still might be found.

In view of this generality of the results of Prigogine and his group, it
is imperative to compare the other kinds of approeches with Prigogine's results;
such a cowparison can not only clarify some physical or mathematical aspects of
either theory, but also can evaluate the extent of generality and the inherent
limitations involved. We attempt such a comparison with respect to the theory
advanced by Bogolyoubov in 1946.8

Bogolyoubov has proposed a systematic procedurs of sclving ty successive
approximations the Bogolyoubov-Borm-Green-Kirkwood-Yvon hierarchy of integro-
differential equations for the probability distributions for sub-sets of s
(s KN} particles of an N-particle system. Actually there are two versions of
the Bogolyoubov theory--one uses the concentration C = N/V as the expansion
paraneter, vhereas in the other version the potential energy of intermolecular
forces, U, is replaced by AU and an expansion in powers of A\ is used. Iv the
first version one tries to reduce the problem of N-body motion to that of
finding trajectories and momenta predicted dy an exact solution of equations of
wmotion for 2, 3, . +. « 8, bodiea. The potential then has to be assumed to be

o

# e.g., turbulence; the extent of this limitation has not yet been fully
clarified,



repulsive, in order to ensure that the considered s bodies would be found in
an uncorrelated state (all relative distances very hrge) if one goes to the
limit t—> -co, This version has been considered by Choh and Uhlenbeck,
Hollinger,* Green,* and Cohen,* and substantial results have been derived.

In the second version the reduction to the 2, 3, . . . body problem is od-
scured by the use of a different counting parameter (i.e., \) and, indeed,

a collective motion of an electron gas can be described; on the other hand, the
boundary ccrditions are much simpler and there is no use to asmume that the
potential 1s only repulsive.

Since the Prigogine theory is bogsed on a weak coupling expansion, a com-
parison with the first version would involve a rearrangement of Prigogine's
equations so that terms would be ordered with regard.to the number of particles
involved or, alternatively, an expansion of Bogolyoubov results in powers of A.
For that reason vwe attempted a comparison of the weak coupling version of
Bogolyoubov's theory.

The weak coupling version has been applied tc the plasma problem, but it
has never been formally solved to all orders of A. Chapter I deals with this
problem; the Bogolyoubov procedure is strictly folloved and the formal solution
is given in the form of recursion relations between scattering operatorss

In a second chapter now in preparation we express the results of Chapter I
in terms of Fourier components of the distribution function and show hov the
resulting expressions are related to the kinetic equations of Prigogine.

# References to earlier work of this author can also be found in Chapter X.
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CHAPTER I

Chapter I is a reproduction of a papex by J. Stecki, and bas been sub- )
mitted to the Journal of Chemical Physics for publication, ‘

" THE WEAK COUPLING VERSION OF BOGOLYOUBOV'S KINETIC THEORY OF GASES*) l
+) !
J Stecki
Depertment of Chemistry, University of Southern California, Los Angeles 7,

Celif.

Abstract
The version of Bogolyoubov's theory of irreversible pbenomena in gases,in which |
the coupling ccnstant is used as an expansion parsmeter, is generalized to ell
orders.
1

In 1946 Bogolyoubov outlined a new approach to the classical statistical mecha-
nics of irreversible phenomens in gases. This theory has been epplied by Choh and
Uhlenbeck2 to derive & generalized form of Boltzminn equstion in which termary
collisions were teken into account. Recently Hollinger ’ has derived equations

valid to a1l orders of concentrestion,The generslization of Bogolyoubov's trect-

ment to all orders of concentration wes also considered by Cohen  and Green &ond

l . .
N.N. Bogolyoubov, Problems of = Dymemicael Theory in Stetistical Physies, in Stu-

dies in statisticﬂza Mechanics, de Boer snd Uhlenbeck, Editors (North-Hollend Publ.;

Co., Amsterdem, 1962)
2
S. T, Choh cnd G, E, Uhlenbeck, Technicel Report, Navy Theor. Phys. Contract No.

Nonr 1224(15) (1958)
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Piccirelli . The alternmative sapproach which uses & coupling constent, )\, a8 an

expansion peremeter, has eslso been given by Bogolyoubov end hcs been applied to @

derivetion of & kinetic equation for a homogeneous electron plasme in o positive

6,7,8
background » This equation has also been derived by Balescu, significently, in

a very different wey, namely, by using the theory developped by Prigogine snd his
9,10,11 2,4,5,12
coworkers « Seversl authors have pointed ocut that the significepce
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where further references cam be found,
11
R Balescu, Stabistical Mechenies of Cherged Paﬁtfgle%; to be published

12
reference 10, Chapter 11, par. 5
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of Bogolyoubov assumptions end the extent ©f genersd®ty of final kinetic eguatiPns
to which his procedure leads, are important end opern questions. Recently this pros
1

blem has been given pgeliminary consideration b3® Reshals 3@ who censideged Briefs
ly the generalizationh of Boltzmann equation in terms of the recently @anpﬁete&’ ge-
neral theorylo. We intend!‘fto present e discussPoft §f This (;neﬁa?on of Bog82youbov
method within the fremework of that general theory given by Prigog?nelo. In this

13
P. Resibois, Physlcs Ietters, 2, 60 (1962) ; J. Brocas (to be published)

1L
J. Steckl and H. S. Taylor, to be published
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paper an explicit formsl calculetion is presented which leads to kinetic equa-

tions velid to a1l orders of A .

THE BOGOLYOUBOV  PROCEIURE N 2“,
Let us introduce the N-particle distribution func?on/of momente, p; , end
positions, q , normailzed to unity and depending on time t. Iet 55 be the s-par-
25 - =

ticle Liouville operator, without the customary i-factors, defined es

K= K§ - A §Ks | (s=12%, ., N) (1)
K=, KT, (2)
K = Ejéié’] e((}- , (3)
Ke@= gm0 (me= ) )
8 = g2 . Mg 2 (5)

The phase of the particie "i" is denoted by %; which is understood to be the 6-

~vector ?&.—lﬁl—il' This is also sbbreviated es {i). Vector notation for p,, 4,

vy is not used. The operator gg corresponds to o Poisson bracket v@rith a hamil-

tonian ®

How Z plGnY" + AU (8)

with intermolecular potential

(7)
Vs = 2o, v Qamail)

vef & i
Along the mechanical trajectory of the system, f-N is & constant of motion

(-]
(3, + KR)fu = © (8)
**)
and from this the well-knowan B-B-G-K-Y @ hiersrchy of equatlons,

<3f + Ks) 7(4 = j‘f"sm 22 Oc,s+4 IC’“" (9)

Lo Cé 3§41
18 c(e'r\'\le_d'c‘.) ;
H}

@®
Bogolyoubov, Born and Green, Kirkwood, Yyon

B



The reduced distribution functions .t_’.s (51’ veey 3:_63_1;._) ere probebility densities
for finding e set of any s particles at specified phases Xys cees Koo The spatlial
part of £l in = homogeneous system is c = y!, vhere V is volume end ¢, number den-
sity; the spatiel part of £ reduces to gs if a}} particles sre uncorrelated, i. e.
if all relative distances between the s perticles sre very lerge. For this reascn
it is convenient to define

+ = ¢t (10)
with the restriction s <K N insofar as the system is finite, so that (9) tekes

the form

4
Mg Jdx, ZQY, + F.H‘l
(86 + Kg) :FS = A SKSE + CJ X4y o S+ 1)

Trg.s system of equations is not closed - in contrast to macroscopic transport
equations. Bogolyoubov then proceeded to assume thet all higher distribution fun- !
«tions are functionals of one-perticle distribution function, or rather of the set ’
of _El" s heving positions end momente of different particles os arguments: _F_‘l(l, _t_) s |
21(2,3:_),, ... . This allows us to write

= 0, (R (12)
where (_)_s is & time-independent operator, and the time t is the same either as ar-
gurent of E'.L'S or of E's

© :
Suppose now one is somehow entitled to expand

® m M
Ts = Z’—ZA ¥s (13)

This could be substituted into (11) end the same powers of A collected. However, ;

the first of the equations (1l1) reads
(3, + KA F () = A [dbia B (G) )

so that to be consistent with (13) for s = 2 we have to expend the time derivative

of _F_‘_l 1

0% = 3 A"A, as)



with

A = = KR (16)

N
-
A ) = ¢ de.‘ B B () m=1). a7)
Therefore we do not expend g‘_ itself; it follows thet the cssumed expension (13)
is to be interpreted es the expension of the operator O, in powers of X
m .
"= O¢ (R0} (a7)

n
The time derivative of !s is then

SF Di)_ ZSFS ZaA,MQ)_

% Ty = AR TN 3F,) (28)
or Ezo)\mo%
(¥ = 2SN QR (19)

where the operator C>®m stands for differentiation with respect to t followed
by substitution of An(j) for afgl(_l)‘, for each J. Using (11) and collecting the
same powers of )\,, we arrive st the basic set of equations
(R, +K) ¥ =0 , (21)
m-i
‘-Qg‘,snf‘?_j— \

(39 * \—(% ) Foo= - i ®m¥$\—m‘\' SKS:F;‘—‘*' CIdKS-H.P/ . (22)
° pugig}

which cen be solved successively, when following the prescription given by Bogo-
Q

lyoubov. There is a veriety of cholces for the zeroth spproximation. Indeed, the

equatiop:
QR+ kE)§ =0 (23)
has a solution
o f— )co(PpciT} e P‘-"?::' to) > ‘7:5 9. -0t 2 (24)

reducing to a prescribed arbitrary functiom _go(l, ccey _s_s_;j:_o) at 1 = 0. Guided by
the form of the Boltzmenn equation, we want
5
o= TTRGY. (25)
This is obtained with the aid of "boundery condition” introduced by Bogolyoubov.

. m,
Consider expression (24) which ca/also be written as




exp (V'fxc;) o
which is noting else than a Teylor expansion of (24) eround t=0 . The exponential
operator shifts the positions backwards along straight lines of unperturbed motion.
Then, for t large emough, a situation will be reached, when all the s particles will

be distant from one amother, so that Zs will reduce to a product of Fy's. So we put

zo(/q_k_, mQ)ﬁp(—‘t"Kg)F‘s = 11 T’?(A'ft)

jeins E (26)
or in terms of !'n
z,
. e o‘= ‘.F:  \t 2
Vim | exp-TKI)FS Ei%’; (>e) (27)
(28)

Lom  axp (TKY)FE = O - (m=L).

T+ 0%
These are Bogolyoubov boundary conditions for homogeneous systems. In that case
E—l = ?-1(2’ _1_:_) does not depend on position. In the inhcmogeneous case some care hes
to be exercised, since gs depends on & given 9i,j explicitly ond implicitly through
EJ.'S which do depend on positions now. The operator hes & property of shifting
everything which is to itg right, so thet _lj‘_l's have to be shifted separately in
the opposite direction in order to compensate for the unwented shift of thelr ar-
guments. In Bogolyoubov' s notation, writing gs(zc_l, ceey X3 !l) insteed of (12),

we have

Lo axp CTKI)Fg (4, .0, s3exp(+TK] )F,) = . RF'. (). (29)

T—> + oo Jes

)
The exponential operator was denoted by Bogolyoubov by SE? . We split (29) into

Lo | _exp TR TR Uyt sepeni)R) =TT RGO,

'QA.UL Q\(p L—TK%)‘:F;QG)“" )6')QXP("TK?):FI) = O) (M}, \)0 (31)
T->» +00 .

These conditions have been used by Bogolyoubov to derive (25) as the solution of

the fomogeneous equation (21) and to show that the solution of exn inhomogeneous

equation




-7 = ’ ' oot T

("o‘o + K%):Fsm = c{: (.*l) 1*5')::) (&)
is
Fo o= jdx exp(-TKS) Cg'l‘ (%iy oy Xs BQ*F(*tK?)r\ ) s (33)

where g: mey stend for the r.h.s. of (22).
FORMAL  SOLUTION

Using (33) in (21) and (22) Bogolyoubov derived the next approximation, which

reads

¥, o= \ff evp - K3) & Kgexp (+TkS) 'AT[ ‘;"S AR E™

The following feetures ex¢ clear. The last term of the r.h.s. of (22) as well as
the <& -operators through the A - functioms introduce P 's of cdditional verie-
bles which are always integrated over, as indicated in (22) end in (17). To each
varteble there corresponds a power of ¢. We denote these "dummy variables" by sub-

seripts o, or «,f . The varisbles represent the "average particles

AP
of the medlum" eallowed to interact with the fixed set of s particles whose posi-
tions and momenta are the arguments of g‘_:. For glven n there can be et most l=n-1
dummy varisbles. Also F‘.L 's sppear only as a product. Therefore we assert that (18)
cen be replaced by
- ice_(z";e(m) TT'F‘(;} T Fe) (

J€§43 o € {{} 35)

{=0

t
vhere the operators S)Ts are to be determined. It is understood that they act
on the main set {g} and on the set of dumy varisbles «,, ... , o, . Now the

results of action of <& -operators can be written down explicitly. When making use

of (17) and (35), we obtain
&J’s 2, Tl' v(,) =2, T H{A, L)

(epy yoi ‘
-t - (38)
o = ¢ dedz OS2, (cd)ﬂ‘?(m(awr ¥ (P
i=1 (e {3} Je1%) U 03



™ = 2y ‘ ‘,
Dy T ‘Z‘:o‘% o Wif; )ISM /(p) (37) '

- Zc“'_Q jdx (Z +Z \ FE..MZ“’"‘).ITE(J)F;;(P)
AGA &

(éi‘)‘) (€

=“Z-l imzy*v"’nzvld‘d(z +Z )gu(-Qz (L,ﬂ()n PQ)Y(*)W .F‘(P)

Yo v':o teis) ey

pew'i
This term can exist for 1 > 3. Finally
n-i m-lﬂ-l
-t ol P( ]
°81:Fsm = {'Z. ciLs jd“(.es; %u c’;) QMW DRE g‘;u fgp) (38)

n
We now substitute these expressions into (22) and (33). We find !s in the form (35),
which proves (35) by induction, (34) being given. When collecting the same powers of

A and ¢ we f£ind three separcte recursions - two particular cases

Q'“s'o - de axp (T KS) 8Ky ,Q_q; "axp(*'c K3) |

=0 (39)
mat T o mimy o meiaed ) |
tem-y 2, = Sﬁmﬂip("'tm\(s)fdx.([lz. 0u (Qs., (19R)-£24 ()] + (40)
end the general ome - -Q":‘s. a 1(2‘ 5 Z‘i’\ 1) 9(4]“(’(‘“ Ksem-1) )
1 ¢m-2 i n-l € m-1,0-1
_Q";Q = jarmexp(-cm Kg){SKS Q, apbTKspe) + jd“d[%.os&(—o-sn (1sh) = (42)
'yt
_lea t(t u))up(;c,ukgu(b’,,o(j(—li)) Z et ',w e Q (wi*\
™. >v'>o
>V¥*30
+2 ) 9NQ1 Lt <)exp (+T, Kg, g (1410 ivS 1‘0"';)) S
with (e v’y
Q‘so = &od.r,u? T KE) SKgexp(+t.KY) | )

This 1s the formal solution, valld for ell n > 1, Now the operators L2 cen be col-

culated successively by simple algebra. Some minor eimplificatiozﬁls achieved by ma- !



king the integrals explicit; there are m integrations over<t,, ..., Th and

_@_ integrations over x,_, l‘.p’ «vs . We note that thers is a separate recursion

for &s 0O; the operators ﬂ”;° represent epproximations th the s-body problem of

isolated g particles involved in gﬂ The other separste recursion involves the lar-

gest power of ¢ possible for given power of A . These terms have been considered

by Guamseya. For a homogeneous system they lead to Belescu-lenard equation.

THE HOMOGEREOUS SYSTEM

Considerable simplificetions occur I1f 1t is assumed that _F_l does not depend on

position. Then
exp(-T KDE =¥

Also, due to spherical symetry of tue interaction potentiel

I's

Jé 0 FOFRW =0

(43)

(44)

We can slso now identify the T-integrals wilth the free propegetors familisr from

1o
the scattering theory, for which many equivelent representations are known. Hence

we introduce the abbreviation

lou: exp(—tkg) = gs

o]

With (25) unchenged, we obtein
1,0 :
OF = 9,8k,

end the following recursions resulting from (39)-(41)

m-4,0

-0 .Q.’:o = ®s SKs f2¢

m-1,0
g em?

BT T [ e

'M'.'M't vl’vh (€ §‘5“

: m-1,¢-) _
Qn;f _ @6 [8 Ky Qs + %iﬂfd\ggu (Q Sy ($8},2¢)

(45)

(46)
(1)
m-1,f-1
£2, (o))+
(x3)
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SRR il PP [« AR (TR BRo A O

Ce |y

IS

(49)

DISCUSSION

The last recursiom, (49), is of remarkable simplicity. It has been examined by
8 .
Guernsey in a different but equivelent form end shown to leed for 8 = 2 and when
used in conjunction with (15)-(17) to the Balescu-lenafd kinetic equation. Notably
mm-1\

.  1s e sum of binary tems, so that £2,(id) just cancels a tem in Q.,, .

The general term is of the form

9 fax Tog I g ey .

so that no two propagatorx follow one emother without being separated by (a sum of)
scattering operators Ojj. Thic cen be traced back to the fact that only oD ¥
contributes here. As cen be seen fram (47), that is no longer true in the genersl
term, 1€ 4¢M-2 | Eeon ) -operator contains slweys one S, &t the outmost
left resulting directly from (33). Therefore the last term of the r.h.s. of (48)
will introduce & QSQ; sequence, which will reappesr later to give rise to o
‘@ 9 @@9‘-,)', sequence, etc. We see that, indeed, the terms with )\ncn—l are
exceptionally simple.

The Markovien character is assumed explicitly as early as in (1é)r. A non-Marko-

vien beheviour could result, if we would allow the operator 0O, to depend on time t

and 1t 1s pot cleaxr how this could be done without deperting radically from the Bo-

golyoubov procedure. On the other hand we know that the most genersl kinetic equa-
tions are non-Markovianlo.

n - .
Owing to the simplicity of the bcﬁary conditions, there is no need to assume

‘ L
that the intermmolescular potentiel is only mpulsivel’ 3 apd oll expressions are in
principle emensble to explicit celculetions. On the other hend, some individual

integrals can diverge owing to the repulsive force heing infinite at the center of




.

- 1l
the particles for common potentials; hence same resumnation procedure may be ml3

- o comon feature of all wesk-coupling theories.
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